ESTABLISHING A RELATION BETWEEN TURBULENT
STRESSES AND THE MEAN FLOW PARAMETERS FOR
AN INCOMPRESSIBLE FLUID WITH A POSITIVE
PRESSURE GRADIENT
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The isothermal turbulent boundary layer is analyzed which forms during the flow of air
through conical or flat diffusers at Reynolds numbers in the 48,850-202,000 range in the
entrance. The relation between turbulent stresses and the mean flow parameters in the
boundary layer can be established on the basis of the data obtained here.

In order to calculate the friction which appears at a solid surface in a liquid or a gas stream, it is
necessary to solve the Navier— Stokes and continuity system of equations with the appropriate constraints.
This is a system of second-order nonlinear differential equations and, therefore, a mathematical solution
is very difficult here.

An effective method of solving this problem is to replace the system of equations by the Prandtl boun-
dary layer equations. The latter, in conjunction with the continuity equation, make it rather easy to solve
the friction problem for a laminar flow. When the flow is turbulent, however, difficulties arise in the treat-
ment of the boundary layer equations as a result of not knowing how the tangential and the normal stresses
are related to the mean flow parameters.

In recent years one has often solved the problem by applying the momentum integral equation (Kar-
man equation) to the boundary layer:
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This must be attributed to the lack of sufficient experimental data.

We will analyze here the isothermal turbulent boundary layer which forms during the flow of air
through a conical of a flat diffuser. The study was made using an aerodynamic duct of the open kind. The
tests covered a range of Reynolds numbers from 48,500 to 202,000 in the entrance (see Table 1).

The conical diffusers were made 500 mm long with 100 mm entrance diameters and an 8° or a 10°
divergence angle. The important variables were measured at sections 0, 30, 75, 135, 202, and 360 mm
away from the entrance. The flat diffuser had a 40 x 180 mm cross section at the entrance and was 174 mm
long. The lower and the upper wall were movable so that the divergence angle could be varied. Tests
were performed here with a 10°, 12°, and 14° divergence angle. In all cases the important variables were
measured at sections 0, 30, 60, 90, 130, and 170 mm away from the entrance.

At each section we measured the average velocity profile, the turbulence of the axial and the normal
velocity components, the turbulent shearing stress profile, and the correlation between axial and normal
velocity pulsations at a test point.
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TABLE 1. Velocities of a Potential Fiow The measurements were performed with a UTA-5B
and Corresponding Reynolds Numbers in electrothermoanemometer fully described in [1].
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where u; =u,/u, is the dimensionless velocity at the edge of the boundary layer, X =x/d,, is the dimen-
sionless coordinate, and dgqy i8 the equivalent diffuser diameter d =100 mm for the conical diffusers

equ
and dequ =65.4 mm for the flat diffuser). d

The values of

8
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were computed for each section of the boundary layer under all flow conditions. An analysis of the results
has yielded the following relation
L = cBH™,

where 0= 6/d is the dimensionless momentum thickness and ¢ and m are constants.

equ
In order to determine the exponent in this relation, the test data have been plotted on a graph to a log

—logscale (Fig. 1). Thetest points are seen to lie close to a straight line with the slope m =3. The con-

stantc_ isequalto0.005. Thus, the turbulent stresses may be related to the mean flow parameters as follows:

I = - —— (0H3%2). 5

We will note that D. Ross [3] derived a relation between Reynolds stresses and the mean flow param-
eters on the basis of the P, Granville hypothesis that

§ @? — v'?)dy ~8*.
0

Using the data obtained by G. B. Schubauer and P. S. Klebanoff [2] and by J. Laufer [4], D. Ross
[3] could derive the following kind of relation between turbulent stresses and the mean flow parameters:

2.67 d w2
=L = u2). 6
I 7 I {0.0066%42) (6)
The integral term on the right-hand side of Eq. (1) will be evaluated here according to formulas (5)
and (6), on the basis of the experimental data given in [2]. The calculated results are shown in Fig. 2 in
dimensionless coordinates. The unit length is 7 =3.048 m and the unit velocity is the velocity at the x =5.38
m section, where flow begins under dP/dx > 0. The form factor H and the velocity distribution along the
edge of the boundary layer have been assumed known from the data in [2]. The coefficient of skin friction
cf has been calculated by the Ludwig— Tilman formula:
18 0.2 1Q~0.6781
c; = 0,246 - 0—0.6784
It can be seen from Fig. 2 that both formulas (5) and (8) yield similar values for the integral I, with
the Ross formula (curve 4) giving somewhat lower values than formula () (curve 3).

The evaluation of the terms in Eq. (1) has confirmed that, as separation is approached, the usually
disregarded last term on the right-hand side of Eq. (1) becomes quite large and near separation becomes
comparable with the first term. Therefore, the skin friction coefficient, which is obtained from the
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Fig. 1. The integral term 1./8 as a function of the form factor H: flat diffuser
with a 10° (1), a 12° @), and 14° (3) divergence angle; conical diffuser with an
8° divergence angle and with a Reynolds number 48,500 (4), 135,500 (5), and
200,000 (6} in the entrance; conical diffuser with a 10° divergence angle and with
a Reynolds number 52,700 (7), 145,700 (8), and 202,000 (9) in the entrance.

Fig. 2. Values of individual terms on the right-hand side of Eq. (1): 1(H +2)

8/u, -duy/dx (1), og/2 =0.123.10""63H Re ¥ ) (1/u} . d/dx) [@'2-v'?) dy ¢-5),
: 4

with the approximations according to Egs. (5), (6), and (20), respectively (x,m).

momentum equation with the integral term omitted, increases as separation is approached and this contra-

dicts the experimental results where the values of cf have been determined from thermoanemometer mea-
surements.

Inserting (5) into (1), we obtain the Karman momentum equation:
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It would be of interest to study the change in momentum thickness calculated from the momentum
equation with and without the turbulence terms taken into account. This is best done using the experimental
data by Schubauer and Klebanoff.

The results of calculations are shown in Fig. 3, where the axial distribution of momentum thickness
(s in Fig. 2, 1 =3.048 m) along the wing profile length is plotted from the x =5.38 section with dP/dx > 0
on. It can be seen here that the calculated I~curve, which includes the turbulence terms in the near-
separation regions, does not bend downward as does curve 2 calculated disregarding the turbulence terms,
and this indicates the considerable effect of the turbulence components on the momentum thickness. The
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Fig. 3. Effect of normal stresses on the magnitude of 6: according to Eq. (1), accord-
ing to the Karman momentum equations (2). The points on the graph correspond to
measured values of momentum thickness,

Fig. 4. Relation between normal and tangential stresses in a boundary layer: flat
diffuser with a 12° divergence angle and Re =57,600 at x =0.46 (1) and X =2.6 (2);
conical diffuser with a 10° divergenceangle, Re =145,700 at x =2.8 (3); according to
Schubauer— Klebanoff measurements [2] (4) at x =7.46 m. —6/u; du;/dx =0.0034 (1),
0.0037 (2), 0.0036 (3), and 0,0037 (4).

measured values of momentum thickness.according to the data in [2], lie somewhat above the calculated curve
as a result, apparently, of secondary flow modes produced in the wide 3.048 m long test segment of the
Schubauer— Klebanoff profile.

Thus, as Figs. 2 and 3 indicate, the integral term in Eq. (1) must be taken into account when the
momentum equation is used for calculating the boundary layer in a turbulent flow inder a positive pressure
gradient, Disregarding this term would give rise to significant errors in the determination of the friction
coefficient and of the mixing length near separation.

Another appfoach to solving the problem is to express the normalstresses in the integral term (2)
in terms of tangential stresses:

W? — v =)
For this purpose, the local values of the tangential stress to normal stress ratio

"o Qu—?z ®
ey

are calculated from the pulsation intensity of the axial and the normal velocity components and from the
turbulent shearing stress profile at the various boundary layer sections. In Fig. 4 is shown the distribution
of n values across the boundary layer thickness at different sections of conical and flat diffusers, these
values having been obtained from our measurements and from [2] at approximately the same values of
—6/uy duy/dx. It is evident here that the magnitude of % fluctuates considerably about some mean value,
while the latter definitely tends to increase as the outer edge of the boundary layer is approached.

In Fig. 5 are shown the mean values of % at various boundary layer sections, as a function of — §/u,
. duy /dx, fordifferent Reynolds numbers in the entrance section of a flat and a conical diffuser. On the same
diagram are shown the corresponding values measured by Schubauer and Klebanoff [2] and by Laufer [4],
the structure of a turbulent boundary layer in a flat channel having been thoroughly studied in [4]. The
distribution of test points in Fig. 2 based on measurements made in [2] and [4] does not provide sufficient
evidence for firm conclusions. An overall analysis of all points in Fig. 2 may, on the other hand, yield

an approximate relation:
w—tp—p L da (10)
Uy dx
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Fig. 5. Parameter % as a function of — 6/uy-du;/dx:
flat diffusers with a 10° (1), 12° @), and 14° (3) diver-
gence angle; conical diffuser with an 8° divergence
angle and Reynolds number 45,800 (4), 135,500 (5), and
200,000 (6); conical diffuser with a 10° divergence
angle and Reynolds number 52,700 (7), 145,700 8), and
202,000 (9) in the entrance section; 'according to mea-
surements in [4] (10); according to measurements in
[2] (11).

The values of coefficients k and b are determined by the method of least squares: k=-19.60 and b =0.883.
The straight line representing Eq. (10) approximates the test data with a +18.6% maximum deviation of test
points for .

In this way,
— 900 6 du
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If the tangential shearing stresses in the turbulent flow field are known, then the normal stresses can be
calculated from Eq. (12).

We will note that Ross [3] used the anisotropy of turbulent stresses for expressing the relation between
normal and tangential stresses as

wo—v'=— _ngz; . (13)
where « is the angle between the principal axis of the turbulent stress tensor and the direction of mean
flow. H. L. Dryden has suggested in {5] that the turbulent shearing stress may be related to the local
anisotropic turbulence and that tan2o may be assumed approximately constant. D. Ross has confirmed
this hypothesis and, analyzing the data in [2] and [4], has found that for purposes of calculation one may
assume tan2a to be constant and approximately equal to 0.75, i.e., that

4 —o" = 96T, (14)

In analyzing the test data in [2] and [4], Ross used the pulsation components of velocity u' and v' at

the boundary layer section where dP/dx =0. This explains why the value of % obtained by him is indepen-
dent of the pressure gradient.

848



An analysis of the velocity pulsations measured by Schubauer and Klebanoff at boundary layer sections
where the pressure gradient is positive will show that the tangential stress to normal stress ratio decreases
somewhat as the pressure gradient increases. These data can be sufficiently well approximated by the

equation
i 0 du
®» =081 +4,14 — . =L
i dx {15)
A comparison between Egs. (12) and (14) with du,/dx =0 indicates that they yield close results.
If Eq. (12) is inserted into Eq. (2), we obtain
I
j ___ul I dy
I= 2;;227 ; : 8 du 16
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h X

Thus, under the integral in (16) there appear tangential stresses whose values can be taken from tests,

K. K. Fedyaevskii [6] has represented the tangential shearing stress distribution across a turbulent
boundary layer section in terms of a fourth-degree polynomial in 7=y/6. With the boundary conditions
taken into account, this polynomial is

T

T 8  du
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This equation does not account for the effect of the profile form factor on 7, and this form factor
varies considerably with the pressure gradient. Moreover, it is convenient to replace the boundary layer
thickness in (17) by the momentum thickness 6.

Based on a generalization of experimental data on turbulence and on the mean values of boundary layer
parameters for a flow of an incompressible fluid under a positive pressure gradient [1], we have established
the distribution of tangential shearing stresses as:

L 8 duy [ H—133
pu? B fi(m) “ I ( 0.95H )f2 (), (18)
where
fi(m) =1—2,In4t 41,1921,
f ) = { 6.66m —11.119? for 0<n<03;
: 11.69(1—n)® — 12.53 (1—n)* for 03<n< L.

Therefore, expressing the tangential stresses according to (18) and inserting these expressions into
(16) will yield

[}
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Changing y to the variable of integration y/6 and assuming that 6 =86 on the average, we can obtain
a following expression for the integral in (19):

0 dy ( H—1.33 )}

2| 0. —0.48 — .
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Such a representation of the integral term (2) in the momentum equation (1) facilitates its numerical evalua~-
tion. This integral term expressed as in (20) has been computed from the test data in [2]. The result of
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this computation is shown in Fig. 2 (curve 5) for a comparison with the results obtained by formulas (5)and
(6). It is evident that formula (20) yields almost the same value for the integral I as formulas (5) and (6),
but the authors believe that the method of calculating the integral in the form (5) is somewhat simpler.

NOTATION
X is the axial distance along a diffuser, measured in the direction of flow;
y is the distance along the normal to a diffuser, measured from the surface;
uy is the mean velocity at the edge of a boundary layer;
Uy is the mean velocity at the edge of a boundary layer in the diffuser entrance;
6 is the boundary layer thickness;
o is the boundary layer displacement thickness;
6 is the momentum thickness of a boundary layer;

is the form factor of the velocity profile across a boundary layer 6*/6;

gy = (Jﬁ/up, gy = WYy uy) are the turbulence intensity components of axial velocity;
pu'v’', pﬁ_'z_, pv' are the tengential and normal stresses.
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